Non-Aqueous Solvent-based CO₂ Capture Process

Marty Lail¹, Joshua Herr¹, Kelly Amato¹, Markus Lesemann¹, and Luke Coleman¹ Christian Riemann², Kumar Sugavanam², Sean Rigby², Todd Spengeman², Georg Sieder², and Torsten Katz² ¹Center for Energy Technology, RTI International, Research Triangle Park, NC 27709, USA

²Gas Treatment Process Technology, BASF Corporation, Houston, TX 77002, USA

Not degraded by water

Objective

Develop novel, non-aqueous CO₂ scrubbing Performance Targets solvents and capture process that substantially reduces the parasitic energy penalty and corresponding increase in cost of electricity for post-combustion COcapture compared to state-of-the-art CO2

Rehailer Duty < 2 ft G.l/tonne CO.

 Plant Efficiency < 7 points loss conomic Indicators: % Increase in COF < 50% Cost of CO₂ Avoided < \$45/tonne

Background

Current Situation

- . State-of-the-art CO2 capture processes have high thermal and electrical energy requirements
- . Large quantity of high quality steam required for solvent regeneration derates low-pressure steam turbine
- . Large compression energy requirement due to low CO2 partial pressure generated during solvent regeneration -> derates electrical generation Parasitic power load ranges from 1,200 to 1,500 kJe / kg CO₂
- State-of-the-art CO2 capture processes have high capital and
- Extremely large process equipment
- Expensive materials of construction due to corrosivity of solvents
- . High degradation rates due to O2 and SO2 in flue gas
- Evaporative losses and wastewater treatment requirements
- Increase in Cost of Electricity (ICOE): > 65%
- Cost of CO₂ Avoided: > \$60 / tonne
- Current USDOE ICOE targets for post-combustion CO₂ capture

Path to Reducing ICOE and Cost of CO₂ Avoided

Power + Capital + Operating Break Down¹ Consumption Expense Expense

Largest contributor to ICOE is the Power Consumption → Reboiler Duty

Reboiler Heat Duty Contribution Breakdown

Solvent	C _p [J/g K]	Ah _{abs} [kJ/mol]	Δh _{vap} [kJ/mol]	X _{solv} [mol solvent/ mol solution]	Δα [mol CO ₂ / mol solvent]	Reboiler Heat Duty [GJ/tonne CO ₂]
MEA (30%)	3.8	85	40	0.11	0.34	3.22
Lower Energy Solvent System	1	1	1	1	1	1

- Aqueous systems have similar properties such as high heat capacities, heats of absorption and vaporization, and high dilutions
- Reboiler heat duties are similar and can only be improved marginally by lower heats of absorption or increase in concentration of amine.

Development Approach

Non-aqueous solvent systems

- · Desirable physical and chemical properties to lower reboiler duty

V—ОН

Rate = 10 s⁻¹

Development Approach (cont'd)

Technical Challenges for Non-Aqueous Solvents

- Chemical degradation by water
- Water reacts with stronger bases producing the hydroxide anion
- CO₂ is absorbed as a bicarbonate salt requiring more energy for regeneration Physical accumulation of water from flue gas in solvent
- Flue gas from wet EGD is saturated (~15%) with water vapor.
- can condense or be desiccated by non-aqueous solvents in the absorber
- vessel under optimal absorption conditions until VLLE is established Solids formation in rich solvent
- . Many non-aqueous solvents form insoluble solids at high CO2 loadings
- Solids can accumulate in packing or other undesirable areas in the process Viscosity of solvent
- Affects rate of CO₂ capture and operation of columns Impacts size of absorber and regenerator vessels
- Foaming
- Anti-foaming agents must be added to avoid entrainment and frothing

Development approach is focused on addressing these and additional challenges

Technology Development Plan

- Comprehensive solvent screening Identify solvent systems . Determine thermodynamic and physio-
- CO₂ capture process modeling Develop comprehensive process mode
- · Evaluate novel process configurations and integration schemes

Relevant Environment Validation Bench-scale testing to assess

- Continuous flow CO₂ capture unit
- testing with high-fidelity flue gas Collect process data to support simulation and design of pilot unit de · CO2 capture process modeling

Experimental Resources

Highly Automated Solvent Evaluation System

Fully-automated VLE and Reaction Calorimeter

- Vapor-liquid Equilibrium (P_{CO2} vs CO₂ Loading)
- Reaction Calorimetry (Heat of CO₂ Absorption) · Specific Heat Capacity

Experimental Results

Heat of CO₂ Absorption

CO2 Loading (mol CO2/mol solvent)

Long-Term Testing with High-fidelity Flue Gas

Evaluation Conditions

Absorption:

14%CO₂, 4%O₂, 50 ppm SO₂, Bal. N₂ Water Content: Solvent fully saturated

Temperature: Ramp to 75°C Gas Composition: N₂ Purge Water Content: Solvent fully saturated

Solvents evaluated continuously for ~400 hours

Water accumulation is a major hurdle for nonaqueous systems

RTI's Non-Aqueous Solvents:

- Are selective for non-aqueous reaction pathways in the presence of water
- Have low water solubility and therefore form a separate liquid phase in the presence of water Maintain a system-wide water balance without
- distillation and offer low-energy separation options Have low regeneration temperatures allowing use of lower quality steam

Process Engineering

- Short-cut method for estimating the reboiler duty is a very useful tool for identifying promising solvent systems
- . Uses experimentally collected data (no inferred or estimated properties) . Has been shown to accurately estimate the reboiler duty (largest contributor to the total energy penalty)
- Approach is fundamentally applicable to all gas absorption systems

Conditions: CO₂ Capture Extent: CO₂ Absorber Temperature: 40°C Regenerator Temperature: 120°C

Results

· Non-aqueous solvents have regeneration energies < 2.5 GL/tonne CO.

• > 35 – 55 % reduction compared to SOTA processes

• Process model of a supercritical PC power plant has been developed

to estimate parasitic power load and net energy penalty (Aspen Plus) Basis: Case 12 – Supercritical PC Power Plant with CO₂ Capture. Cost and Performance Comparison of Fossil Energy Power Plants (2007), DOE/NETL-

Case 12 – Supercritical PC Power Plant

CO ₂ Capture Scenario	Net Power [kWe]	Net Efficiency [%]	Efficiency Point Loss	Parasitic Power Load ¹ [kJe/kg CO ₂]				
No Capture	784,700	39.1	-	N/A				
With Capture Econamine FG+	545,995	27.2	11.9	1,511				
Non-Aqueous Solve	ents							
CarboKatz	643,585	32.1	7.0	900				
SugavaSep	672,729	33.6	5.5	710				
ColemaClean	642,788	32.1	7.0	900				
LesemaLiquid	631.385	31.5	7.6	970				

- Non-aqueous solvent CO₂ capture processes have much lower parasitic power loads
- · Primarily due to lower quantity and quality of steam required for solvent regeneration
- Parasitic power load [kJ_a / kg CO₂] of non-aqueous solvents is approx. 50% of state-of-the-art CO₂ capture processes
- Potential for significant reduction in increase in cost of electricity

Current and Planned Activities

- Design and construction of a bench-scale process unit for evaluating non-aqueous solvents in a representative process configuration, under realistic conditions with real, fossil fuel derived flue gas
- . Installed, commissioned, and operational by January 2012 Long-term evaluation of non-aqueous solvents with real flue gas · Continued detailed technical and economic assessment

Acknowledgements

ARPA-E Team: Dr. Daniel Matuszak and Dr. Mark Hartney Funding: DOE/ARPA-E Grant #: DE-AR0000093